Understanding the links between sleep and well being – lessons from fruit flies



Drosophila melanogaster
, commonly known as fruit fly or more appropriately vinegar fly, is the second most common animal model used in research. Initially established by Thomas Hunt Morgan at the beginning of 1900s to provide an empirical base to the groundbreaking hypotheses of Darwin, flies have contributed to science in every realm, from development to genetics and neuroscience. 6 Nobel prizes have been awarded to flies in the past century, with the last one being awarded in 2018 to three Drosophila researchers for their work in the characterisation of circadian behaviour.

My laboratory uses flies to try and answer one simple, yet fascinating question: why do we sleep? What is sleep for and why humans and all animals seem to require sleep? Our approach is somehow different mainstream one, because flies force us to think to the problem in an unusual and more creative way. So far this has paid off egregiously, and we have managed to make very important discoveries that apply well beyond the fly realm.

One aspect of our research that may be particularly interesting for someone puzzled about the science of physical well being, is that we do not consider sleep to be a prerogative of the brain but actually a phenomenon that affects every part of our body. Whenever we lack sleep – whether for fun or for work – we can feel an effect of sleep deprivation not just on our cognitive performance but on our very body too. This is more than a subjective feeling: it is a well-established phenomenon in humans and animals. Why is it so? Studying sleep deprivation in flies we hope to give an answer to this question.

In particular, we use state of the art technology to a) deprive flies of sleep employing custom-made robots and b) exploring what changes at the cellular level when we lack sleep. How genes, proteins, and other molecules change their composition when we lack sleep?

We can use the same robotic technology to also study physical behaviour in these animals: are they in good shape? Can they climb a wall as they normally do? Can they fly with the same stamina and precision? A great amount of literature in the field of muscular degeneration has been obtained in fruit flies and we have learned a great deal about genes controlling these aspects and how they fail in disease.

A very important corollary of our research is that understanding the functions of sleep opens the door to what we somehow half-jokingly call “the sleep pill”. If could understand what aspects of sleep make us refreshed and performing – both behaviourally and physically – we could then replace sleep pharmacologically. Or we could consolidate the beneficial aspects of sleep to increase its restorative power. To do that, we first need to understand what sleep is and what it does.

What would we do with a philanthropic donation?

We would employ the money to retain a brilliant young research assistant for a year or longer so that she could continue working on her project. The student recently graduated from an MSci in Neuroscience and she joined our laboratory for a summer placement in order to gain first-hand insights into our research. If she could stay longer, she could join and potentiate the research line of the laboratory that looks at the direct consequences of sleep deprivation. I have been working with Imperial Alumni who were kind enough to donate to my laboratory in the past. It has been a great honour and a pleasure and I am looking forward to doing this again.

Comments are Disabled