Il virus dell’ Influenza – principi di virologia e immunologia.
I primi documenti che segnalano i sintomi di una epidemia di influenza risalgono al 412 AC, ad opera di Ippocrate1. Il termine influenza viene utilizzato per la prima volta circa 2000 anni dopo, in Italia, per descrivere quei malanni più o meno ricorrenti che, come molti altri eventi, sembravano essere influenzati dagli influssi astrali. Il termine italiano è rimasto nell’uso scientifico e anche in inglese al giorno d’oggi si parla di influenza virus. Dal punto di vista biologico, un virus influenzale è un virus molto semplice: composto da una decina di proteine, ognuna delle quali si occupa di un ruolo specifico2. Le proteine HA e NA, per esempio, sono le più importanti proteine sulla superficie del virus e il loro ruolo è quello di riconoscere “al tatto” una cellula ospite – cioé la possibile vittima – funzionando un po’ come chiavi per serrature. Essendo però in superficie, HA e NA3 costituiscono anche il tallone d’achille del virus perché sono il bersaglio principale della risposta anticorpale.
Rappresentazione schematica di un virus dell’influenza. Le proteine Neuraminidasi (NA) e Emaglutinina (HA) sono i principali antigeni (4)
Il sistema immunitario dei mammiferi è adattivo, cioé impara con l’esperienza: una volta messo in contatto con un agente estraneo, sviluppa proteine altamente specifiche dette anticorpi. Quando prodotti in quantità sufficiente, gli anticorpi ricoprono l’agente infettivo e lo marchiano per la distruzione da parte delle cellule del sistema immunitario. È il motivo per cui, in un organismo sano, molte malattie infettive si prendono soltanto una volta nella vita (morbillo o orecchioni sono un esempio noto). Ogni vaccino sfrutta proprio queste proprietà: ci si inietta in corpo una versione del virus innocua o indebolita, che possieda le proteine di superficie in modo da stimolare gli anticorpi ma che non sia abbastanza virulenta da scatenare la vera malattia. La specificità della risposta anticorpale, però, fa sì che talvolta sia sufficiente cambiare anche di poco la forma delle proteine di superficie affinché gli anticorpi non le riconoscano con la stessa efficienza.
Il virus dell’influenza sfrutta questa debolezza e tende a mutare utilizzando due fenomeni: mutazioni spontanee e minori dette di deriva antigenica (antigenic drift) e ricombinazioni, cioé mutazioni molto più sostanziose che cambiano completamente l’aspetto del virus (spostamento antigenico o antigenic shift).
Nella deriva antigenica, il virus cambia gradualmente e casualmente finché la sorte non introduce un numero di mutazioni che sono allo stesso tempo limitate abbastanza da non interferire troppo con la funzione del virus e diversificanti abbastanza per scappare anche solo parzialmente alla risposta immunitaria. La deriva antigenica è responsabile dell’avvento dell’epidemia stagionale, cioé quella che si verifica ogni anno. Una parte consistente del virus dell’influenza stagionale che è circolato negli ultimi decenni è una versione riveduta e corretta dello stesso virus che ha creato una pandemia nel 1968 (detto Hong Kong, variante H3N2). L’influenza suina di questi mesi sarà probabilmente una delle basi su cui si costruiranno i virus stagionali per i prossimi anni o decenni. Così via fino alla prossima pandemia.
Nuovi ceppi che hanno originato pandemie recenti. Dopo l’esplosione iniziale, il virus rimane per anni e modificandosi contribuisce ad aumentare il bacino dei virus cosiddetti stagionali 5.
È importante sottolineare che mutazioni avvengono continuamente6 ma fortunatamente la stragrande maggioranza delle mutazioni di deriva antigenica è dannosa per il virus stesso. Alcune sono silenti e altre ancora hanno pochissimo effetto. Perché sia realmente pericoloso, un virus mutato deve avere a) un vantaggio selettivo contro tutti gli altri miliardi di virus nell’organismo, di modo da prendere il sopravvento, b) riuscire ad uscire dal corpo ed infettare qualcun altro per propagarsi. Ogni anno, solo in Italia, vengono identificate decine di mutazioni7. Queste piccole continue mutazioni permettono al ceppo virale di non estinguersi e ripresentarsi di anno in anno al nostro organismo. Allo stesso tempo, il fatto che il virus stagionale sia solo minimamente diverso, lo rende anche relativamente meno pericoloso. Dico relativamente perché i numeri non sono altissimi ma sono sicuramente degni di nota: tra il 5% e il 20% della popolazione si ammala di influenza ogni anno, con un tasso di mortalità di circa 0.1%. Vuol dire circa 3000-12000 morti all’anno solo in Italia. Viste queste cifre, perché quindi tutto questo baccano per il virus dell’influenza suina che finora ha fatto in Italia meno di 70 morti (equivalente ad un tasso di mortalità dello 0.0029%)7?
Perché quella che ora chiamiamo H1N1 è una pandemia scaturita non da una deriva antigenica ma da uno spostamento antigenico. Gli spostamenti antigenici sono decisamente più rari e si verificano quando lo stesso ospite (ad esempio un maiale) è infettato contemporaneamente da due virus diversi: uno che di solito colpisce solo i maiali e uno che di solito colpisce solo l’uomo ma che per un processo di mutazioni è riuscito ad entrare, seppur timidamente, all’interno delle cellule suine.
Una delle differenze più evidenti del nuovo H1N1 appare guardando il periodo di diffusione del virus. Un segno di diverse capacità infettive rispetto ai ceppi stagionali. Notare che proprio per la diversa tempistica, il 99% del virus che circola in questo periodo è 2009H1N1. La stagionale arriverà più avanti come gli altri anni. Fonte: Istituto Superiore di Sanità.
I danni potenziali di un nuovo ceppo creato attraverso spostamento antigenico sono enormi. Basti pensare che l’influenza cosiddetta spagnola, che si crede essere originata in questo modo (anche essa un’influenza H1N1), colpì apparentemente il 30% della popolazione con un tasso di mortalità del 10-20%. Tra 50 e 100 milioni di morti in due stagioni: più della guerra e più della peste nera nel medioevo. Più morti di influenza spagnola in 25 settimane che di HIV in 25 anni.
Ogni nuova pandemia ha, in principio, la stesso rischio di diventare altamente pericolosa. Certo a distanza di quasi un secolo le nostre capacità di affrontare l’epidemia sono diverse: esistono unità di terapia intensiva che una volta non esistevano; inoltre la popolazione non è stremata dalla guerra come nel 1918. Però è anche vero che si viaggia molto di più e quindi ci si dovrebbe aspettare una pandemia con velocità ben più alta, magari esplosiva abbastanza per saturare gli ospedali. In sostanza, non potendo prevedere a priori la pericolosità di un possibile spostamento antigenico, l’OMS ha il dovere di lanciare l’allarme e prepararsi al peggio. È difficile farlo senza scatenare il panico, però, o senza fare la figura di quello che grida “al lupo al lupo”. Impossibile farlo se non si riesce a spiegare che un nuovo virus dell’influenza comporta un rischio potenzialmente altissimo per la società. La parola chiave, qui, è "potenziale".
Lo stato attuale delle cose.
Il nuovo H1N1 (chiamato appunto 2009 H1N1) è in giro da diversi mesi. Non sembra certo avere la pericolosità di una nuova influenza spagnola. A dirla tutta, sembra essere meno pericoloso della solita influenza stagionale. Quindi viene spontaneo porgersi alcune domande.
La prima: l’abbiamo scampata? Probabilmente sì. Ormai siamo in piena fase discendente della diffusione del virus. Il rischio che il virus evolva in una forma più pericolosa esiste sempre ma è probabilmente simile a quello che si corre ogni anno con la normale influenza. L’unico dubbio che rimane è cosa succederebbe se influenza stagionale e influenza H1N1 co-infettassero gli stessi soggetti. Una nuova ricombinazione sarebbe molto probabile e potenzialmente pericolosa.
La seconda: l’allarme era ingiustificato? No. È innegabile che questo sia un nuovo ceppo virale. Sarebbe stato impossibile prevedere fin dall’inizio l’esatta pericolosità. La cautela era d’obbligo.
La terza: han fatto bene (o fanno bene) i media a titolare in prima pagina ogni singola morte? Certo che no. I numeri parlano chiaro e non giustificano il panico.
La quarta: quindi, vaccinarsi non serve a nulla? Sbagliato. Vaccinarsi serve almeno tanto quanto serve vaccinarsi contro la normale influenza stagionale. Anche se, cumulativamente, il rischio di complicazioni o di fatalità legato a 2009H1N1 è più basso dell’influenza stagionale, la distribuzione del rischio rimane comunque differenziata in base alla categoria di appartenenza. Soggetti con malattie croniche (soprattutto polmonari) o donne incinte, ad esempio, hanno un rischio di complicazione significativamente più alto. Considerando che gli effetti collaterali della vaccinazione sono infinitesimali, la scelta dovrebbe essere semplice. Proprio le donne incinte, ad esempio, hanno un rischio decisamente più alto di qualsiasi altra categoria, benché storicamente rappresentino la categoria più restia alla vaccinazione(8). Purtroppo a qualcuno piace diffondere anche panico da vaccino, come se non bastasse il panico da H1N1.
H1N1 2009 influenza virus infection during pregnancy in the USA. The Lancet, 2009
Annu Rev Cell Dev Biol. 2006;22:651-75.
Regulation of commissural axon pathfinding by slit and its Robo receptors.
Barry J. Dickson, Giorgio F. GilestroCommissural axons grow along complex pathways toward, across, and beyond the midline of the central nervous system. Taking commissural axons in the vertebrate spinal cord and the Drosophila ventral nerve cord as examples, we examine how commissural axon pathfinding is regulated by the Slit family of guidance cues and their Robo family receptors. We extract several principles that seem likely to apply to other axons and other contexts, such as the reiterative use of the same guidance molecules in distinct pathfinding decisions, the transcriptional specification of a pathway, the posttranscriptional regulation of growth along the pathway, and the possible role of feedback mechanisms to ensure the fidelity of pathfinding choices. Such mechanisms may help explain how a relatively small number of guidance molecules can generate complex and stereotyped wiring patterns. We also highlight the many gaps in our understanding of commissural axon pathfinding and question some widely accepted views. We hope that this review encourages further efforts to tackle these questions, in the expectation that this system will continue to reveal the general principles of axon pathfinding.
Once again, it’s Nobel Prize time. The first prize to be awarded, as expected, was for Physiology and Medicine and went to Craig Mello and Andrew Fire. Mello and Fire were awarded for their discovery of
a fundamental mechanism for controlling the flow of genetic information
namely what is now known as RNA interference or RNAi. Uncommonly for a Nobel Prize, this year’s award came relatively soon after the discovery to which is referred. The paper describing Fire’s and Mello’s work was published in 1998 on Nature. This has been interpreted as a sign of the outstanding importance of their discovery since usually it takes decades for a work to be recognized valuable of such an award. Now, the very fact that someone is publishing a work that is so important to inaugurate a brand new field from scratch is definitely rare and it is something that every scientist dream about. It does happen periodically and many times is, indeed, well recognized for instance with a Nobel Prize. What is very rare, though, it’s the discovery to come out of the blue, completely unexpected. Was this the case for Fire’s Work (he was the corresponding author in the paper)?
All In The Mind is a wonderful Radio program broadcasted weekly on ABC National Radio in Australia. You can listen at the radio show live if you live in that part of the world or simply download the mp3 files and listen at them from your computer. On the website you can also find transcript of the transmission, in case your english is not excellent and you need some sort of subtitles. The program is also reachable through iTunes so that automatic downloading from week to week is possible in an automatic way. Whatever your choice, I do recommend you hook on it since All in The Mind is one of the best science program you’ll ever experience. All in The Mind describes itself as
a program about the mind, brain and behaviour. From dreaming to depression, addiction to artificial intelligence, consciousness to coma, psychoanalysis to psychopathy, free will to forgetting – All in the Mind explores the human condition through the mind’s eye.
Natasha Mitchell is leading the discussions always in a brillant way; she is not just an ordinary science journalist being actually a scientist herself having studied ingeneering and gone through a PhD in engineering. We all know it is not straight forward to talk about science to non scientists but at the same time we are all well aware of how important this is. All in The Mind really does a good job such that contents are not only enjoyable to non experts but to scientists too. All programs focus on one topic, of course: the mistery of the human mind. It may sound reductive but I believe we got enough material to talk about!